eduzhai > Applied Sciences > Engineering >

A New Two-Parameter Heteromorphic Elliptic Equation: Properties and Applications

  • KanKan
  • (0) Download
  • 20210301
  • Save

... pages left unread,continue reading

Document pages: 17 pages

Abstract: The ellipse and the superellipse are both planar closed curves with a double axis of symmetry. Here we show the isoconcentration contour of the simplified two-dimensional advection-diffusion equation from a stable line source in the center of a wide river. A new two-parameter heteromorphic elliptic equation with a single axis of symmetry is defined. The values of heights, at the point of the maximum width and that of the centroid of the heteromorphic ellipse, are derived through mathematical analysis. Taking the compression coefficient θ = b a = 1 as the criterion, the shape classification of H-type, Standard-type and W-type for heteromorphic ellipse have been given. The area formula, the perimeter theorem, and the radius of curvature of heteromorphic ellipses, and the geometric properties of the rotating body are subsequently proposed. An illustrative analysis shows that the inner contour curve of a heteromorphic elliptic tunnel has obvious advantages over the multiple- arc splicing cross section. This work demonstrates that the heteromorphic ellipses have extensive prospects of application in all categories of tunnels, liquid transport tanks, aircraft and submarines, bridges, buildings, furniture, and crafts.

Please select stars to rate!

         

0 comments Sign in to leave a comment.

    Data loading, please wait...
×