eduzhai > Applied Sciences > Engineering >

Numerical Study of Mixed Convection in a Photovoltaic Trombe Wall Channel Coupled with a Solar Chimney Integrated into a Building for Habitats Passive Cooling

  • KanKan
  • (0) Download
  • 20210224
  • Save

... pages left unread,continue reading

Document pages: 20 pages

Abstract: The solar chimney can generate airflow through the living space of the building to provide cooling. Hence, solar energy represents the best renewable, environmentally friendly source of energy that can be used for heating and cooling of houses. The present paper reports the numerical study of the performance of the mixed convection in the associated hybrid Photovoltaic Thermal chimneys integrated into building for natural habitat ventilation. The front side glass plate of the chimneys is heated by a non-uniform daily solar radiation flux. Air is considered to be the cooling fluid. The stream fucntion-vorticity formulation with a finite difference numerical discretization solution scheme has been adopted. The system of algebraic governing equations is solved by Thomas algorithm method. The aim of the present paper is to study and to predict the dynamic fields and particularly of the mass flow rate of the air thermosiphon drawing in the associated hybrid Photovoltaic-Thermal chimneys integrated into a building for passive cooling in the habitats. The effects of the governing parameters, namely Reynolds number (30 ≤ Re ≤ 200), Rayleigh number (103 ≤ Ra≤ 105), the integrated chimney width on the fluid flow and the heat transfer characteristics, are studied in detail. The local Nusselt number, streamlines, isotherms, PV cells electrical efficiency and the outlet velocity at the top of the channels are the results represented versus the above controlling parameters.

Please select stars to rate!

         

0 comments Sign in to leave a comment.

    Data loading, please wait...
×