eduzhai > Physical Sciences > Physics Sciences >

A New Global Scalarization Method for Multiobjective Optimization with an Arbitrary Ordering Cone

  • Save

... pages left unread,continue reading

Document pages: 10 pages

Abstract: We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of the original problem. This equivalence holds globally and enables one to use global optimization algorithms (for example, classical genetic algorithms with “roulette wheel” selection) to produce multiple solutions of the multiobjective problem. In this article we prove the mentioned equivalence and show that, if the ordering cone is polyhedral and the function being optimized is piecewise differentiable, then computing the values of a scalarization function reduces to solving a quadratic programming problem. We also present some preliminary numerical results pertaining to this new method.

Please select stars to rate!

         

0 comments Sign in to leave a comment.

    Data loading, please wait...
×