eduzhai > Physical Sciences > Physics Sciences >

Reduction of Superconducting Wave Packets in Dispersion Dynamics

  • Save

... pages left unread,continue reading

Document pages: 13 pages

Abstract: Two problems in solid state physics and superconductivity are addressed by applications of dispersion dynamics. The first is the Hall effect. The dynamics of charges that yield positive Hall coefficients in material having no mobile positive charges have always been problematic The effect requires both electric and magnetic response, but magnetic deflection is only possible in mobile charges. In high temperature superconductors, these charges must be electrons. Contrary to Newton’s second law, their acceleration is reversed in crystal fields that dictate negative dispersion. This is evident in room temperature measurements, but a second problem arises in supercurrents at low temperatures. The charge dynamics in material having zero internal electric field because of zero resistivity; and zero magnetic field because of the Meissner-Ochsenfeld diamagnetism; while the supercurrents themselves have properties of zero net momentum; zero spin; and sometimes, zero charge; are so far from having been resolved that they may never have been addressed. Again, dispersion dynamics are developed to provide solutions given by reduction of the superconducting wave packet. The reduction is here physically analyzed, though it is usually treated as a quantized unobservable.

Please select stars to rate!

         

0 comments Sign in to leave a comment.

    Data loading, please wait...
×