Free reading is over, click to pay to read the rest ... pages
0 dollars,0 people have bought.
Reading is over. You can download the document and read it offline
0people have downloaded it
Document pages: 10 pages
Abstract: In this paper, three complexes with 8-hydroxyquinoline (8-HQ) were synthesized, their spectral analysis was performed and the antimicrobial effect was examined in vitro. The stoichiometric ratio of the complex was determined conductometrically and spectrophotometrically. FTIR and UV VIS spectroscopy were used for structural characterization. Antimicrobial activity was examined by diffusion technique on selected gram-positive and gram-negative bacteria, and C. albicans. Square planar and octahedral geometry complexes were synthesized by mixing in a molar ratio of 1:2 (M:L). Based on the spectral data, it is concluded that both oxygen and nitrogen atoms from 8-HQ are involved in the formation of the complex. The antimicrobial activity of the complexes is high, with zones of inhibition in the range of 15 - 28 mm. 8-HQ was shown to have a significantly higher ability to inhibit the growth of the tested microorganisms.
Document pages: 10 pages
Abstract: In this paper, three complexes with 8-hydroxyquinoline (8-HQ) were synthesized, their spectral analysis was performed and the antimicrobial effect was examined in vitro. The stoichiometric ratio of the complex was determined conductometrically and spectrophotometrically. FTIR and UV VIS spectroscopy were used for structural characterization. Antimicrobial activity was examined by diffusion technique on selected gram-positive and gram-negative bacteria, and C. albicans. Square planar and octahedral geometry complexes were synthesized by mixing in a molar ratio of 1:2 (M:L). Based on the spectral data, it is concluded that both oxygen and nitrogen atoms from 8-HQ are involved in the formation of the complex. The antimicrobial activity of the complexes is high, with zones of inhibition in the range of 15 - 28 mm. 8-HQ was shown to have a significantly higher ability to inhibit the growth of the tested microorganisms.