eduzhai > Physical Sciences > Materials Sciences >

(S) Synthesis and structural characterization of tetrahydropyrrole - [1,2, C] - imidazole-1,3-dione

  • sky
  • (0) Download
  • 20211030
  • Save
https://www.eduzhai.net International Journal of M aterials and Chemistry 2012, 2(4): 141-144 DOI: 10.5923/j.ijmc.20120204.05 Synthesis and Structural Characterization of (S)-Tetrahydro-Pyrrol-[1,2,c]-Imidazole-1,3-Dione Gerzon E. Delgado*, Jines E. Contreras Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, M érida, 5101, Venezuela Abstract In this wo rk we present the synthesis and X-ray single crystal structural characterization of the heterocyclic compound (S)-tetrahydro-pyrrol-[1,2,c]-imidazole-1,3-dione. Th is material crystallize in the orthorhombic system with space group P212121 (Nº19), Z=4, and unit cell parameters a = 7.136(1) Å, b = 8.009(2) Å, c = 11.378(2) Å. The molecular structure shows a hydantoin and pyrrolidine ring coupling forming a bicyclohydantoin. The crystal pac king is governed by N--H···O hydrogen bond-type intermolecu lar interactions, forming infinite one-d imensional chains. Keywords Hydantoin, Hydrogen Bonding, X-ray Crystal Structure 1. Introduction The imidazolidine-2,4-d ione, or hydantoin, is a co mmon 5-member ring containing a reactive cyclic urea core[1,2]. This heterocycle represents a significant molecu lar template in comb inatorial chemistry libraries[3-5], due principally to the four possible points of substitutions. The biological activities of hydantoin derivatives has been known for a long time, and are responsible for a wide variety of b iological behavior[6], due principally to its wide range of therapeutic properties. For instance, several applications have been re port ed for h yd antoins: antia rrh yth mic a n d antihypertensive[ 7], antiviral[8], antineoplastic[9], antitu moral[10] and anticonvulsant agents[11]. The best knwon hydantoin, phenytoin, is the most widely used antiepileptic drug[12]. In addition, these compounds are used as herbicides[13] and fungicides agents[14]. On the other hand, the b iocatalytic conversion of 5-subtituted hydantoins to amino acids has received considerable attention recently for their potential applications in the industrial productions of optically pure amino acids[15,16]. For these reasons, there has been much interest in the search of new synthetic routes for hydantoin via solution[17], or solid state reactions[18-21]. In our laboratory we are interested in the study of N-carbamoyl and hydantoin natural amino acids derivative compounds[22-26], therefore we report here the structure of (S)-tetrahydro-pyrrol-[1,2,c]-imidazole-1,3-d ione, the hydantoin derivative of the natural amino acid L-pro line. The analysis of the hydrogen bond patterns is also discussed. * Corresponding author: gerzon@ul a.ve (Gerzon E. Delgado) Published online at https://www.eduzhai.net Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved 2. Experimental 2.1. Synthesis The title co mpound was synthesized fro m L-pro line using a methodology previously reported[22,23]. 500 mg (4.3 mmo l) of L-proline was disolved in 20 mL of water and the solution was acidified with concentrated HCl (37 % v/v) to pH = 5. Then, 1050 mg (12.9 mmo l) of KOCN was added to this solution. The mixture was warmed up, with agitation, to 60 °C, during 4 h. The resultant solution was acidified with HCl to pH = 2 and agitated during 4 h, until the precipitation of a white solid. (see scheme 1). The solid was filtered and washed with cool water. Colorless crystals of 1 suitable for X-ray diffraction analysis were grown by slow evaporation in a 1:1 methanol-water solution (m.p.: 210-212 °C). FT-IR 1757.6 cm-1 [t, C=O], 1708.7 cm-1 [t, C=O]. 1H NM R (400 MHz, DMSO-d 6) δ =7.27 (H3), 4.07 (t, H5), 3.43 (q, H6A), 3.02 (q, H6B), 2.03 (s, H8A), 1.60 (s, H8B), 1.90 (m, H7A), 1.93 (H7B). 13C NM R (100.6 MHz, DMSO-d6) δ =161.0 (C2), 174.5 (C4), 64.0 (C5), 44.9 (C6), 26.7 (C8), 26.6 (C7). S cheme 1. Synthesis of (S)-t etrahydro-pyrrol-[1,2,c]-imidazole-1,3-dione 2.2. X-ray crystallography Colorless rectangular crystal (0.4, 0.2, 0.1 mm) was used for data collection. Diffraction data were collected at 298(2) K by ω-scan technique on a Rigaku AFC7S Mercury diffracto meter [27] equipped with graphite- monochromat iz ed MoKα radiation (λ = 0.71073 Å). The data were corrected for Lorentz-polarizat ion and absorption effects[28]. The 142 Gerzon E. Delgado et al.: Synthesis and Structural Characterization of (S)-Tet rahy dro-Py rrol-[1,2,c]-Imidaz ole-1,3-Dione structure was solved by direct methods using the SHELXS program[29] and refined by a full-mat rix least-squares calculation on F2 using SHELXL[28]. The absolute structure was assigned from the known configuration of L-pro line. All H ato ms were placed at calculated positions and treated using a riding model, with C-H distances 0.96-0.98 Å and Uiso(H) = 1.2Ueq(C)], N-H 0.86 Å and Uiso(H) = 1.2Ueq(N)]. 3. Results and discussion Figure 1 shows the molecular structure and the atom-labeling scheme of 1[30], and Table 1 shows the crystallographic data and structure refinement parameters. deviations of -0.049 (2) Å in N1 and 0.049 (2) Å in C2. The pyrrolid ine ring shows maximal deviations to the average plane in the atoms C6 [0.225(2) Ǻ] and C5 [0.189(2) Ǻ]. The N1--C2--O2 bond angle 128.4(2)° is lightly greater than the N3--C2--O2 angle 124.7 (2)° (Table 2). This difference is also observed in the hydantoin molecule[31] and the others hydantoin derivative co mpounds found in the Camb ridge Structural Database, CSD version 5.33 updates (Feb 2012)[32], includ ing the same hydantoin structural report without hydrogen atoms[33]. The asymmetry parameter analysis of the pyrrolid ine ring, [∆Csmax= +47.1(3)°, ∆Cs min= +1.9(4)°, ∆C2max= +62.0(3)°, ∆C2 min= 16.5(3)°, ∆Cs(C8)=1.9(4)°, ∆Cs(C6-N1) = 1.9(4)°], indicates that the same adopt an envelope conformat ion [34]. Figure 1. The molecular structure of 1, showing the atomic numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are shown as spheres of arbitrary radii Table 2. Select ed geometrical parameters (Å, º) O2-C2 N1-C2 N1-C8 N3-C4 C5-C6 C7-C8 N1-C2-O2 C2-N1-C5 C5-N1-C8 C5-N1-C2-O2 C8-N1-C2-O2 1.215(2) 1.352(2) 1.468(2) 1.356(2) 1.522(2) 1.529(3) 128.4(2) 110.9(1) 111.6(1) -170.6(2) -34.7(3) O4-C4 N1-C5 N3-C2 C4-C5 C6-C7 N1-C2-N3 N3-C2-O2 C2-N1-C8 C2-N3-C4 C4-N3-C2-O2 C2-N3-C4-O4 1.224(2) 1.461(2) 1.408(2) 1.499(2) 1.529(3) 106.9(1) 124.7(2) 123.0(1) 111.9(1) 172.1(2) -177.5(2) Table 1. Crystal data, data collection and structure refinement Chemical formula Formula weight Crystal system Space group a(Å) b(Å) c(Å) V(Å3) Z dx (g cm-3) F(000) µ(mm-1) θ range (°) hkl range Reflect ion s Co llect ed Unique (Rint) With I > 2σ(I) Refinement method Number of parameters R(F2) [I > 2σ(I)] wR(F2) [I > 2σ(I)] Goodness of fit on F2 Max/min ∆ρ (e Å-3) C6H8N2O2 140.14 Ort horhombic P212121 7.136(1) 8.009(2) 11.378(7) 650.3(2) 4 1.431 296 0.110 3.1-28.1 -9 ≤ h ≤ 8, -9 ≤ k ≤ 9, -14 ≤ l ≤ 14 7408 1374 (0.026) 1207 Full-matrix least-squares on F2 93 0.0389 0.1042 1.09 0.17/-0.13 The hydantoin ring is essentially plane with a maximal Figure 2. A portion of the crystal packing viewed in the cb plane. Intermolecular hydrogen bonds, N--H···O, are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity The mo lecular structure and crystal packing of 1 are stabilized by intermolecular N3---3···O4 (-x, ½+y, ½-z) hydrogen bonds (Table 3), forming infin ite one-diment ional zigzag chains that run along (010) direction, which can be described in graph-set notation as C(4)[35] (see Figure 2). These chains that extend along the b axis overlap resulting in a lamellar packing type with mo lecules that pile up along the a direction, with average planes separated 3.57 Å. Table 3. Hydrogen bonds geometry Selected (Å, º) D--H···A N3---H3···O4(i) D--H 0.98 Symmetry codes: (i)-x, ½ + y, ½ - z H···A 1.90 D···A D--H···A 2.881 (2) 174 International Journal of M aterials and Chemistry 2012, 2(4): 141-144 143 4. Conclusions In the crystal structure of (S)-tetrahydro-pyrrol-[1,2,c]imidazo le-1,3-d ione, the mo lecules are lin ked by N---H···O hydrogen bonds, forming infinite one-d imensional zig zag chains, running along [010] plane, with a C(4) graph-set motif. ACKNOWLEDGEMENTS This work was supported by CDCHT-ULA (grant C-1755-11-08-B) and FONA CIT (grant LAB-97000821). REFERENCES [1] C.A. López, G.G. Trigo, “The chemistry of hydantoins”, Adv. Heterocycl. Chem. 38, 177-210, 1985. [2] M . M eusel, M . Gütschow, “Recent developments in hydantoin chemistry. A review”, Org. Prep. Proced. Int. 36, 391-443, 2004. [11] G. Singh, P.H. Driever, J.W. Sander, L. Sander, “Cancer risk in people with epilepsy: The role of antiepileptic drugs”, Brain 128, 7-17, 2005. [12] H.H. M errit, T.J. Putnam, “A new series of anticonvulsant drugs tested by experiments on animals”, Arch. Neurol. Psychiatry 39, 1003-1015, 1938. [13] M . Shiozaki, “Syntheses of hydantocidin and C-2-thioxohydantocidin”, Carbohydr. Res. 337, 2077-2088, 2002. [14] J. M arton, J. Enisz, S. Hosztafi, T. Timar, “Preparation and fungicidal activity of 5-substituted hydantoins and their 2-thio analogs,” J. Agric. Food. Chem. 41, 148-152, 1993. [15] B. Wilms, A. Wiese, C. Syldatk, R. M attes, J. Altenbuchner, “Development of an escherichia coli whole cell biocatalyst for the production of L-amino acids”, J. Biotechnol. 86. 19-30, 2001. [16] S.G. Burton, R.A. Dorrington, “Hydantoin-hydrolysing enzymes for the enantioselective production of amino acids: new insights and applications”, Tetrahedron Asymm. 15, 2737-2741, 2004. [17] E. Kleinpeter, “The structure of hydantoins in solution and in the solid state”, Struct. Chem. 2, 161-173, 1997. [3] K.H. Park, J. Ehrler, H. Spoerri, M .J. Kurth, “Preparation of a [18] A. Ganesan, “Cyclative cleavage strategies for the 990-member chemical compound library of hydantoin- and solid-phase synthesis of heterocycles and natural products”, isoxazoline-containing heterocycles using multipin M ethods Enzymol. 369, 415-434, 2003. technology”, J. Comb. Chem. 3, 171-176, 2001. [19] J. Vázquez, M . Royo, F. Albericio, “Re-evaluation of a [4] M .J. Lin, C.M . Sun, “M icrowave-assisted traceless synthesis solid-phase hydantoin synthesis”. Lett. Org. Chem. 1, of thiohydantoin”, Tetrahedron Lett. 44, 8739-8742, 2003. 224-226, 2004. [5] W. Zhang, Y.M . Lu, C.H.T Chen, L. Zeng, D.B. Kassel, [20] J. Alsina, W.L.Scott, M .J. O’Donnell, “Solid-phase synthesis “Fluorous mixture synthesis of two libraries with hydantoin-, of α-substituted proline hydantoins and analogs”, Tetrahedron and benzodiazepinedione-fused heterocyclic scaffolds”, J. Lett. 46, 3131-3135, 2005. Comb. Chem. 8, 687-695, 2006. [21] V. Kumar, H. Rana, R. Sankolli, M .P. Kaushik, “Highly [6] E. M utschler, H. Derendorf, “Drug Actions, Basic Principles and Therapeutic Aspects”, M edpharm Scientific Publishers, efficient dialkylphosphate-mediated syntheses of hydantoins and a bicyclohydantoin under solvent-free conditions”, Stuttgart, 1995. Tetrahedron Lett. 52, 6148-6151, 2011. [7] T. Dylag, M .Zygmunt, D. M aciag, J. Handzlik, M . Bednarski, B. Filipek, K. Kiec-Kononowicz, “Synthesis and evaluation of in vivo activity of diphenylhydantoin basic derivatives”. Eur. J. M ed. Chem. 39, 1013-1027, 2004. [8] N. Opacic, M . Barbarić, B. Zorc, M . Cetina, A. Nagl, D. Frkovic, M . Kralj, K. Pavelic, J. Balzarini, G. Andrei, R. Snoeck, E. De Clercq, S. Raić-M alić, M . M intas, “The novel L- and D-Amino acid derivatives of hydroxyurea and hydantoins: Synthesis, X-ray crystal structure study, and cytostatic and antiviral activity evaluations,” J. M ed. Chem. 48, 475-482, 2005. [9] E. Lattmann, W.O. Ayuko, D. Kinchinaton, C.A. Langley, H. Singh, L. Karimi, M .J. Tisdale, “Synthesis and evaluation of 5-ary lat ed 2(5H)-furanones and 2-ary lat ed pyridazin-3(2H)-ones as anti-cancer agents”, J. Phar. Pharmacol. 55, 1259-1265, 2003. [10] C. Carmi, A. Cavazzoni, V. Zuliani, A. Lodola, F. Bordi, P.V. Plazzi, R.R. Alfieri, P.G. Petronini, M . Mor, “5-Benzylidene-hydantoins as new EGFR inhibitors with antiproliferative activity”, Bioorg. M ed. Chem. Lett. 16, 4021-4025, 2006. [22] L.E. Seijas, G. E. Delgado, A.J. M ora, A. Bahsas, J. Uzcátegui, “Síntesis y caracterización de los derivados N-carbamoilo e hidantoina de L-prolina”, Av. Quím. 1, 3-7, 2006. [23] L.E. Seijas, G. E. Delgado, A.J. M ora, A. Bahsas, A. Briceño, “(2S)-1-carbamoylpyrrolidine-2-carboxylic acid”, Acta Cryst. C63, o303-o305, 2007. [24] G.E. Delgado, A.J. M ora, J. Uzcátegui, A. Bahsas, A. Briceño, “(S)-5-benzylimidazolidine-2,4-dione monohydrate”, Acta Cryst. C63, 448-450, 2007. [25] L.E. Seijas, A.J. M ora, G.E. Delgado, M . Brunelli, A.N. Fitch, “Study of the conversion of N-carbamoyl-L-proline to hydantoin-L-proline using powder synchrotron X-ray diffraction”, Powder Diffr. 25, 342-348, 2010. [26] G.E. Delgado, L.E Seijas, A.J. M ora, T. Gonzalez, A. Briceño, “Synthesis, crystal structure and hydrogen-bonding patterns in (RS)-1-carbamoyl pyrrolidine-2-carboxylic acid”, J. Chem. Cryst. 42, 388-393, 2012. [27] Rigaku, CrystalClear. Rigaku Corporation, Tokyo, Japan, 2002. 144 Gerzon E. Delgado et al.: Synthesis and Structural Characterization of (S)-Tet rahy dro-Py rrol-[1,2,c]-Imidaz ole-1,3-Dione [28] Rigaku/M SC, CrystalStructure. Rigaku/M SC, Texas, U SA, 2004. [29] G.M . Sheldrick, “A short history of SHELX”, Acta Cryst. A64, 112-122, 2008. [30] G. Bergerhoff, M . Berndt, K. Brandenburg, “Evaluation of Crystallographic Data with the Program DIAM OND”, J. Res. Natl. Inst. Stand. Technol. 101, 221-225, 1996. [31] F. Yu, C.H. Schwalbe, D. Watkin, “Hydantoin and hydrogen-bonding patterns in hydantoin derivatives,” Acta Cryst. C60, 714-717, 2004. [32] F.H. Allen, “The cambridge structral database: a quarter of a million crystal structures and rising”, Acta Cryst. B58, 380-388, 2002. [33] E. Arte, B. Tinant, J. Declercq, G. Germain, M . van M eerssche, “Structure of 2 proline hydantoin derivatives l-proline hydantoin and d-allohydroxyproline hydantoin”, Bull. Soc. Chim. Belg. 89, 379-384, 1980. [34] J.F. Griffin, W. Duax, M . Weeks, “Atlas of Steroid Structure”, New York: Plenum Publishing Corporation, 1984. [35] M .C. Etter, “Encoding and decoding hydrogen-bond patterns of organic-compounds” Acc. Chem. Res. 23, 120-126, 1990.

... pages left unread,continue reading

Document pages: 4 pages

Please select stars to rate!

         

0 comments Sign in to leave a comment.

    Data loading, please wait...
×