eduzhai > Applied Sciences > Engineering >

3D Printed Scaffold Combined to 2D Osteoinductive Coatings To Repair a Critical-Size Mandibular Bone Defect

  • Save

... pages left unread,continue reading

Document pages: 32 pages

Abstract: the reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a mini-pig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D printed scaffold made of clinical-grade PLA, coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (CT-scan, μCT, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20 to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. 3D printed PLA scaffolds loaded with reduced doses of BMP-2 can be a safe and simple solution for large bone defects faced in the clinic.

Please select stars to rate!

         

0 comments Sign in to leave a comment.

    Data loading, please wait...
×