eduzhai > Applied Sciences > Engineering >

Development of Energy Harvesting With Water Droplet Continuous Flow Over Nanohollow and Nanostalagmite of Taro Leaf Surface

  • Save

... pages left unread,continue reading

Document pages: 9 pages

Abstract: Electrical energy is generated by harvesting the induced charge in metal electrodes and by connecting the surface of the taro leaf, coated with the electrodes underneath, to the bridge rectifier and capacitor. This discussion was supported by a Scanning Electron Microscope analysis on the surface of taro leaves. The electrical energy was measured using a bridge rectifier at various water droplet rate in contact with leaf, and at various slope of the taro leaves. The results showed that the slope of the leaf surface contact area with water droplets and taro leaf increases the generation of electric voltage. The greater the tilt angle of the taro leaf surface causing more electrons to jump out of orbit. The surface of taro leaves made by a cluster of nanostalagmites with other nanostalagmites separated by nanoscalehollows that tend to repel water droplets. The results from the repulsion of nanostalagmites at a very small radius of the nanostalagmite structure were very high surface tension or surface energy. The electron jump is mainly generated due to the high surface tension energy of the nanostalagmite structure that when it comes into contact with ionized H+ and OH- in the water droplet,it produces hydrogen (H2). H2 is trapped in the nanohollows between the nanostalagmites. Due to the dense morphology of nanostalagmite, H2 will tend to be pushed upwards to force the water droplet. As a result, the surface tension will be higher and the surface will be more superhydropobic thereby increasing the electrical voltage. The morphology and the tilt angle have an important role in generating electrical energy. Thus, it is necessary to do further research on superhidrophobic characteristics as a solution in the future to overcome the problem of electrical energy.

Please select stars to rate!

         

0 comments Sign in to leave a comment.

    Data loading, please wait...
×